Response Prediction of Structural System Subject to Earthquake Motions using Artificial Neural Network

نویسندگان

  • Snehashish Chakraverty
  • Tshilidzi Marwala
  • Pallavi Gupta
  • Thando Tettey
چکیده

This paper uses Artificial Neural Network (ANN) models to compute structural response of a structural system by training the model for a particular earthquake. Here, the earthquakes in India viz. at Chamoli and Uttarkashi ground motion data have been considered for the analysis. The neural network is first trained here for a single real earthquake data on a single degree of freedom structural system. The trained ANN architecture is then used to simulate earthquakes by feeding various intensities as well as other earthquake data and it is found that the predicted responses given by ANN model are good for practical purposes. If the ANN is trained by a part of the ground motion data then it can also identify the responses of the structural system well for the total period. The safety of the structural systems may be predicted in case of future earthquakes without having to wait for the earthquake to occur for the lessons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS

Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be...

متن کامل

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

متن کامل

Neuro-PD Controller of Structural System to Mitigate Earthquake Vibrations

In this paper, stabilization of the structural system against earthquake is presented. Because the conventional PD controller is popular and simple in design, our controller is based on PD controller. The main problem of such a controller is its inability to produce desired response and instability against variations in the properties of the structural system. To obviate this issue, the neu...

متن کامل

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

STRUCTURAL RESPONSE OBSERVER BASED ON ARTIFICIAL NEURAL NETWORK

Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0705.2235  شماره 

صفحات  -

تاریخ انتشار 2006